An Efficient Parallel Three-Level Preconditioner for Linear Elliptic Partial Differential Equations

نویسندگان

  • Aixiang Yao
  • Calvin J. Ribbens
چکیده

(ABSTRACT) The primary motivation of this research is to develop and investigate parallel precondi-tioners for linear elliptic partial differential equations. Three preconditioners are studied: block-Jacobi preconditioner (BJ), a two-level tangential preconditioner (D0), and a three-level preconditioner (D1). Performance and scalability on a distributed memory parallel computer are considered. Communication cost and redundancy are explored as well. After experiments and analysis, we find that the three-level preconditioner D1 is the most efficient and scalable parallel preconditioner, compared to BJ and D0. The D1 pre-conditioner reduces both the number of iterations and computational time substantially. A new hybrid preconditioner is suggested which may combine the best features of D0 and D1. ACKNOWLEDGEMENTS I am greatly indebted to my advisor, Professor Calvin J. Ribbens for many stimulating discussions and his valuable advice throughout this work. Without his guidance, encouragement , and support, this paper would not have been possible. I would like to thank him and the other members of my committee, Dr. Watson and Dr. Beattie, for their guidance and assistance throughout my graduate studies. Finally, I would like to thank my friends and my family for being there when I needed them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Solution of Elliptic Partial Differential Equations via Effective Combination of Mesh Quality Metrics, Preconditioners, and Sparse Linear Solvers

In this paper, we study the effect the choice of mesh quality metric, preconditioner, and sparse linear solver have on the numerical solution of elliptic partial differential equations (PDEs). We smoothe meshes on several geometric domains using various quality metrics and solve the associated elliptic PDEs using the finite element method. The resulting linear systems are solved using various c...

متن کامل

Parallel Preconditioned Conjugate-Gradients Methods on Transputer Networks

We show how highly efficient parallel implementations of basic linear algebra routines may be used as building blocks to implement efficient higher level algorithms. We discuss the solution of systems of linear equations using a preconditioned Conjugate-Gradients iterative method on a network of transputers. Results are presented for the solution of both dense and sparse systems; the latter bei...

متن کامل

AILU: a preconditioner based on the analytic factorization of the elliptic operator

AILU: A Preconditioner Based on the Analytic Factorization of the Elliptic Operator Martin J. Gander and Frederic Nataf Department of Mathematics, McGill University, Montreal, Canada and CMAP, CNRS UMR7641, Ecole Polytechnique, Palaiseau, France We investigate a new type of preconditioner for large systems of linear equations stemming from the discretization of elliptic symmetric partial differ...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Preconditioning Techniques for the Bidomain Equations

In this work we discuss parallel preconditioning techniques for the bidomain equations, a non-linear system of partial differential equations which is widely used for describing electrical activity in cardiac tissue. We focus on the solution of the linear system associated with the elliptic part of the bidomain model, since it dominates computation, with the preconditioned conjugate gradient me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998